

EXPRESS ENGINEERING SOLUTIONS

No one can de-code the code like us...!!

PRESSURE VESSEL AND PVELITE SOFTWARE TRAINING

Code Understanding was never so easy...!!

Index

Description	Basic (85 HRS)	Adv (120) HRS
Introduction	6	6
Internal Pressure Calculations	7	7
External pressure Calculations	5.5	7.5
Nozzle Design	9	12
Flange design	9	13.5
PWHT and PFHT	3.25	3.25
Impact Testing	3.5	5
Lifting Lug design	2	2
Hydrostatic test(UG-99), Pneumatic test(UG-100)	1 75	2 75
requirements of code, procedure and significance	1.75	5.75
Wind , Seismic and Combine Loading	4	10
Materials	4.5	4.5
All Weld Figures	3	3
Supports	3.5	10
PvElite	13	13
Q & A	14	14

Lecture no 1 : Introduction to	Hrs	Basic (85 HRS)	Adv (120) HRS
Understanding ASME BPV Code			
Structure of ASME Section VIII div-1			
Thin cylinder stress derivations			
Important code definitions			
ASME Section VIII div-1 - scope and limitations.			
Types of loadings on pressure vessel (UG-22)	6	$\langle \cdot \rangle$	$\langle \cdot \rangle$
Important Properties of pressure vessel materials.			
Introduction to UG-23 and ASME Section II Part D,			
Factor of safety			

- Table U-3 : Year of Acceptable Edition of Referenced
 - Standards in This Division
- Categories of weld Joints
- Joint Efficiency and Table UW-12 understanding

Lecture no 2 : Internal Pressure Calculations	Hrs	Basic (85 HRS)	Adv (120) HRS
Joint Efficiency and Table UW-12 understanding			
Concept of MAWP			
Liquid Static head calculations			
Mill Tolerances- UG-16			
Units and Conversion	7	\bigotimes	\bigotimes
Thickness calculation for internal pressure for			
• Cylindrical shell			
 Spherical and Hemispherical shell 			
• Conical shell			
 Torispherical dished end 			
 Ellipsoidal dished end 			

Lecture no 3 : External pressure Calculations	Hrs	Basic (85 HRS)	Adv (120) HRS
Failures caused by External Pressure & Concept of			
External Pressure			
How external pressure works			
Line of support concept			
Significance of L/Do and Do/t ratios			
Cylindrical shell, Spherical shell			
Thickness calculation procedures for			
External pressure			
• Graphical method	5	\bigotimes	\bigotimes
• Tabular Method			
Thickness calculation for External pressure			
 Cylindrical shell, Thickness reduction by 			
using stiffeners			

 Spherical and Hemispherical shell 			
• Conical shell			
 Torispherical dished end 			
 Ellipsoidal dished end 			
 Flat Head Thickness calculations 			
Concept of Stiffener design for external pressure	0.5	\bigotimes	\bigotimes
 Procedure for Stiffener design for external pressure, 			
 Moment of inertia calculations for various stiffener 	2	×	$\langle \rangle$
cross sections.	~		
 Manual calculations of stiffener sizing 			

Lecture no 4 : Nozzle Design	Hrs	Basic (85 HRS)	Adv (120) HRS
Types of nozzles			
Nozzle neck thickness calculation criteria			
Nozzle neck thickness calculation as per UG-45 Theory and			
Manaual problem			
Openings in pressure vessel UG-36			
Understanding the Reinforcement of Multiple Openings			
Shape of Opening			
Openings in end closures			
Strength and Design of Finished Opening			
Small opening criteria for cyclinder, cones and flat heads			
Concept of reinforcement for Cyclindrical and conical shells as per -	0	6.	67
• For normal opening other than large opening- As per UG-37.	9		

• Reinforcement for large opening- As per UG-37, & 1-7

Concept of reinforcement for Dished Ends as per -

• Reinforcement for all openings - As per UG-37

Concept of reinforcement requirements in Flat heads

- Reinforcement for normal opening other than large
 - opening- As per UG-39.
- Reinforcement for central large opening- As per
 - Mandatory Appendix -14

Understanding of Concept- As per UG-37- For Set in nozzles

Understanding of Concept- As per UG-37- For Set on nozzles			
Manual Problem solving for Set in Nozzle			
Concept of Multiple openings criteria for Vessels			
Manual Problem solving for Set on Nozzle			
Manual Problemo solving for multiple openings			
Manual Problem solving for openings in flat head asper UG-39(b)	0		6.1
Manual Problem solving for openings in flat head asper UG-39(d)-	3		
Alternative method			
Lecture no 5 : Flange design	Hrs	Basic (85 HRS)	Adv (120) HRS
Types of Flanges as per its application.			
Selection OF Standard Flanges			
Scope Of Mandatory appendix -2			
True of flow and now Mondatows Arrow disc 2			

- Type of flanges as per Mandatory Appendix -2
- Flange design concept and steps as per mandatory Appendix -2
- Defining Flange Geometry for Integral flange
- Defining Flange Geometry for Loose ring and optional type.
- Blind Flange Design concept
- Manual Problem for Integral Flange
- Manual Problem for Loose ring Flange
- Blind Flange Design calculations and fininding deflection as per

TEMA

Rectangulare Flange Design as per PD-5500

9		
4.5	X	

Lecture no 6 : PWHT and PFHT	Hrs	Basic (85 HRS)	Adv (120) HRS
Welding Procedure understanding			
HAZ and Residual stress understanding			
How stress relieving works?			
Understanding the need and significance of PWHT (UCS-56)			
PWHT exemption requirements in ASME codes	1.5	\bigotimes	\bigotimes
Procedures and methods for PWHT			
PFHT requirements of code			
Procedures for PFHT			

Heating / cooling rates			
Manual problems solving for PWHT and PFHT calculations	1.7	\bigotimes	\bigotimes

Lecture no 7 : Impact Testing	Hrs	Basic (85 HRS)	Adv (120) HRS
Low temperature working of different material			
Governing thickness concept for impact testing			
Understanding Impact test requirement			
Impact test code exemptions	0 5		
Impact test acceptance criteria	3.5	\bigotimes	
 Material Thickness criteria for impact test 			
Impact test exemption curves			
Manual Problem solving for Impact testing requirement	1.5	X	<i>(/)</i>

Lecture no 9 :	Hydrostatic test(UG-99), Pneumatic test(UG-100) requirements of code, procedure and significance	Hrs	Basic (85 HRS)	Adv (120) HRS
Pressure Testing	g Requirements			
Important defin	itions- MAWP, LSR, Calculated test pressure			
Hydrostatic Tes	t requirement and significance			
Hydrostatic test	procedure and code requirements			
Pneumatic Test	requirement and significance	1 75	67.	
Pneumatic test]	procedure and code requirements	1.73		
Calculating test	pressures, Inspection pressures			
Understanding	pressurization stages , Test temperatures, Test			
Time significant	ce.			

Lecture no 10 : Wind , Seismic and Combine Loading	Hrs	Basic (85 HRS)	Adv (120) HRS
Understanding Concept of Wind load			
Calculation of wind load as per IS 875			
Understanding concept Of Seismic load	4	\bigotimes	\bigotimes
Calculation of seismic load as per IS 1893			
Concept of Combine Loading			
Manual Problem Solving for seismic Load + PvElite calculations			
Manual Problem Solving for wind Load + PvElite calculations	5	X	\bigotimes
Manual Problem Solving for combine loadings + PvElite calculations			
Lecture no 11 : Materials	Hrs	Basic (85 HRS)	Adv (120) HRS
Properties of materials			

Microstructure of materials

- Types of Corrosion and corrosion Rates
- Material chemical compositions
- Effect of alloying elements on material properties
- Material product forms
- Material specifications
- Material selection guide

4.5		
-----	--	--

Lecture no 12 : All Weld Figures	Hrs	Basic (85 HRS)	Adv (120) HRS
 Various types of Weld joints Openings near welding UW-14 Weld taper transition and gap between welds 	3		
Lecture no 13 : Supports	Hrs	Basic (85 HRS)	Adv (120) HRS
 Types of Supports Significance of following types of supports 			
 Skirt Support Leg Support Lug Support 	3.5	$\langle \cdot \rangle$	\sim

• Saddle Support			
Stresses in Vessel due to Saddle Locations			
Procedure for saddle support location			
 Calculation of stresses in vessel component as per Zic Method (Div.2) 			
Manual Problem Solving for calculation of stresses in vessel	4.5	X	$\langle \cdot \rangle$
Manual Problem Solving for saddle support design			
WRC concept and sign conventions	2		

Lecture no 14 : PvElite	Hrs	Basic (85 HRS)	Adv (120) HRS
Intoduction to software all commands			
Horizontal Vessel Design	13	\bigotimes	\bigotimes
Vertical Column Design			
Lecture no 15 : Q & A	Hrs	Basic (85 HRS)	Adv (120) HRS
Live Online Question and answer sessions after every topic	14	\bigotimes	\bigotimes

Thank You

Join Us Now

+91 9921229232 / 9834665446

training@express-engg.com

www.expressengineeringsolutions.in